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1 The Stone-Weierstrass Theorem

1.1 Algebras of functions

Last time, we characterized compact (in some sense ‘small’ subsets of C(X)). This time, we
will characterize larger subsets, in the sense that A ⊆ C(X) is dense. This also generalizes
the classic Weierstrass approximation theorem.

Let X be a compact Hausdorff space. In this lecture, we will denote C(X) = C(X,R).

Definition 1.1. A subset A ⊆ C(X) separates points if for all distinct x, y ∈ X, there
exists a function f ∈ A such that f(x) 6= f(y).

Definition 1.2. An algebra of functions is a linear subspace A ⊆ C(X) such that if
f, g ∈ A, then fg ∈ A.

Definition 1.3. A lattice of functions is a linear subspace A ⊆ C(X) such that if f, g ∈ A,
then max(f, g),min(f, g) ∈ A.

Definition 1.4. A vanishes at x ∈ X if f(x) = 0 for all f ∈ A. A is nowhere vanishing
if it does not vanish at any x ∈ X.

This means that for every x ∈ X, there is some f ∈ A such that f(x) 6= 0.

Theorem 1.1 (Stone-Weierstrass). Let A be an algebra, closed under ρu, and separate
points.

1. If A is nowhere vanishing, then A = C(X).

2. Otherwise, there exists some x0 ∈ X such that A = {f ∈ C(X) : f(x0) = 0}.

R2 is an algebra over R with the multiplication (x, y) · (u, v) := (xu, yv).

Lemma 1.1. As an algebra over R, the only subalgebras of R2 are {(0, 0)}, {0} × R,
R× {0}, {(t, t) : t ∈ R}, and R2.
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Proof. Let A be a subalgebra of R2. We may assume that dim(A) = 1. Let (x, y) ∈ A.
Then x2, y2 ∈ A. These two ordered pairs must satisfy a linear relation, so x = 0, y = 0,
or x = y.

Remark 1.1. This is a special case of Stone-Weierstrass. If X = {1, 2}, then C(X) = R2.

Lemma 1.2. There exists a sequence (pn)n of real polynomial with pn(0) = 0 such that
pn(t)→ |t| uniformly for t ∈ [−1, 1].

Proof. Consider the Maclaurin expoansion of
√

1− s, where 0 ≤ s < 1. Apply this, using
the fact that |t| = +

√
1− (1− t2).1

Lemma 1.3. Let A be a closed subalgebra of C(X), Then f ∈ A =⇒ |f | ∈ A, and A is
a lattice.

Proof. Let f ∈ A with m := ‖f‖u > 0. By considering |f/m| = (1/m)|f |, we may assume
that m ≤ 1. Let (pn)n be given by the previous lemma. Then pn ◦ f converges uniformly
to |f | as n→∞. All the pn ◦ f lie in A, as A is an algebra. Since A is closed, |f | ∈ A.

If f, g ∈ A, max(f, g) = (1/2)|f + g| + (1/2)|f − g|, and min(f, g) = −max(−f,−g).
So these are still in A.

1.2 Proof of the theorem

Now we can prove the theorem.

Proof. Suppose A ⊆ C(X) is a closed lattice that separates points. Also, assume A is
nowhere vanishing.

Step 1: For all x 6= y ∈ X consider Ax,y = {(f(x), f(y)) : f ∈ A}. Then Ax,y is a
algebra of R2, separating points and nowhere vanishing. So Ax,y = R2 for all x, y. Thus, for
any f ∈ C(X) and x, y ∈ X, there exists a function gx,y ∈ A such that g − x, y(x) = f(x)
and gx,y(y) = f(y).2

Step 2: First, here is the idea: Pin down a point x, and vary y. Each gx,y agrees with
f at at least 2 points. Moreover, gx := maxy gx,y must satisfy gx(x) = f(x) and gx ≥ f
everywhere. Then we use compactness to only talk about finitely many points.

Fix x ∈ X. For all y ∈ X, we have gx,y, as above. Fix ε > 0. Now there exists an open
set Uy 3 y such that gx,y|Uy > f |Uy − ε. By compactness, there exists X = Uy1 ∪ · · · ∪Uym .
Now let gx := ax(g−x, y1, . . . , g−x, ym) ∈ A. We still have g(x) = f(x), and for all z ∈ X¡
there exists an i such that z ∈ Ux,yi . So gx(z) ≥ gx,yi(z) > f(z)− ε; i.e. gx(x) = f(x), and
fx > f − ε everywhere.

1This is the way Folland proves this lemma. There are lots of equally good ways to prove this.
2It looks like we are using the axiom of choice here. You don’t actually need it for this.
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Step 3: For every x ∈ X, there exists a neighborhood Vx 3 x such that gx|Vx <
f |Vx + ε. By compactness there exists a finite subcover X = Vx1 ∪ · · · ∪ Vxm . Let g =
min(gx1 , . . . , gxm). Now g < f + ε everywhere, and g > f − ε from step 2.

If A vanishes at x0 ∈ X, then it can’t vanish anywhere else because it separates points.
Rerun the previous proof, just altering Step 1. We know that A ⊆ {f ∈ C(X) : f(x0) = 0}.
If x 6= y ∈ X, and (x0) = 0, then we just need to show that there exists a gx,y ∈ A such
that g − x, y = f(x) and gx,y = f(y). The proof is the same, except the subalgebra we get
is Ax0,y = {0} × R.

Theorem 1.2. Let B ⊆ C(X) be an algebra that separates points. Then

1. If B is nowhere vanishing, then B is dense in C(X).

2. Otherwise, there exists x0 ∈ X such that B is dense in {f ∈ C(X) : f(x0) = 0}.

Proof. Let A = B. This is still an algebra, and we can use the other version of the
theorem.

1.3 The complex Stone-Weierstrass theorem

What about C(X,C)?

Definition 1.5. A *-algebra over C is an algebra such that f ∈ A =⇒ f ∈ A.

Theorem 1.3 (complex Stone-Weierstrass). Let A ⊆ C(X,C) be a closed *-algebra that
separates points. Then

1. If B is nowhere vanishing, then B is dense in C(X).

2. Otherwise, there exists x0 ∈ X such that B is dense in {f ∈ C(X) : f(x0) = 0}.

Example 1.1. What if the algebra is not a *-algebra? Here is a counterexample in this
case. Let X = {z ∈ C : |z| = 1}, and let A be the set of complex polynomials in C(X,C).
We cannot approximate z 7→ z by members of A.

3


	The Stone-Weierstrass Theorem
	Algebras of functions
	Proof of the theorem
	The complex Stone-Weierstrass theorem


